Design And Fabrication Of A Mems Thermoelectric Generator

Design, Fabrication, and Characterization of Multifunctional Nanomaterials

Design, Fabrication, and Characterization of Multifunctional Nanomaterials

Design, Fabrication, and Characterization of Multifunctional Nanomaterials

In response to tremendous growth and new technologies in the semiconductor industry, this volume is organized into five, information-rich sections. Digital Design and Fabrication surveys the latest advances in computer architecture and design as well as the technologies used to manufacture and test them. Featuring contributions from leading experts, the book also includes a new section on memory and storage in addition to a new chapter on nonvolatile memory technologies. Developing advanced concepts, this sharply focused book—Describes new technologies that have become driving factors for the electronic industry Includes new information on semiconductor memory circuits, whose development best illustrates the phenomenal progress encountered by the fabrication and technology sector Contains a section dedicated to issues related to system power consumption Describes reliability and testability of computer systems Pinpoints trends and state-of-the-art advances in fabrication and CMOS technologies Describes performance evaluation measures, which are the bottom line from the user’s point of view Discusses design techniques to create modern computer systems, including high-speed computer arithmetic and high-frequency design, timing and clocking, and PLL and DLL design

Design, Fabrication, and Characterization of Multifunctional Nanomaterials

Robi/Arch 2012

Robotic automation has become ubiquitous in the modern manufacturing landscape, spanning an overwhelming range of processes and applications—from small scale force-controlled grinding operations for orthopedic joints to large scale composite manufacturing of aircraft fuselages. Smart factories, seamlessly linked via industrial networks and sensing, have revolutionized mass production, allowing for intelligent, adaptive manufacturing processes across a broad spectrum of industries. Against this background, an emerging group of researchers, designers, and fabricators have begun to apply robotic technology in the pursuit of architecture, art, and design, implementing them in a range of processes and scales. Coupled with computational design tools the technology is no longer relegated to the repetitive production of the assembly line, and is instead being employed for the mass customization of non-standard components. This radical shift in protocol has enabled the development of new design to production workflows and the recognition of robotic manipulators as “multi-functional” fabrication platforms, capable of being reconfigured to suit the specific needs of a process. The emerging discourse surrounding robotic fabrication seeks to question the existing norms of manufacturing and has far reaching implications for the future of how architects, artists, and designers engage with materialization processes. This book presents the proceedings of Robi/Arch2014, the second international conference on robotic fabrication in architecture, art, and design. It includes a Foreword by Sigrid Brell-Cokcan and Johannes Braunmann, Association for Robots in Architecture. The work contained traverses a wide range of contemporary topics, from methodologies for incorporating dynamic material feedback into existing fabrication processes, to novel interfaces for robotic programming, to new processes for large-scale automated construction. The latent argument behind this research is that the term ‘file-to-factory’ must not be a reductive celebration of expediency but instead a perpetual challenge to increase the quality of feedback between design, matter, and making.

Design and Fabrication of Self-Powered Micro-Harvesters

Design, Fabrication, and Characterization of Multifunctional Nanomaterials

Design, Fabrication, and Characterization of Multifunctional Nanomaterials
Axiomatic Design and Fabrication of Composite Structures

An industrial book that analyses various theoretical problems, optimizes numerical applications and addresses industrial problems such as belt-conveyor bridge, pipeline, wind turbine power, large-span suspended roof and offshore jacket member. Multi-storey frames and pressure vessel-supporting frames are discussed in detail. The book’s emphasis is on economy and cost calculation, making it possible to compare costs and make significant savings in the design stages, by, for example, comparing the costs of stiffened and un-stiffened structural versions of plates and shells. In this respect, this book will be an invaluable aid for designers, students, researchers and manufacturers to find better, optimal, competitive structural solutions. Emphasis is placed on economy and cost calculation, making it possible to compare costs and make significant savings in the design stages of metal structures. Optimizes numerical applications and analyses various theoretical and industrial problems, such as belt-conveyor bridge, pipeline, wind turbine power, large-span suspended roof and offshore jacket member. An invaluable aid for designers, students, researchers and manufacturers to find better, optimal, competitive structural solutions.

Simulations for Design and Manufacturing

The ability to mix minute quantities of fluids is critical in a range of recent and emerging techniques in engineering, chemistry and life sciences, with applications as diverse as inkjet printing, pharmaceutical manufacturing, specialty and hazardous chemical manufacturing, DNA analysis and disease diagnosis. The multidisciplinary nature of this field – intersecting engineering, physics, chemistry, biology, microtechnology and biotechnology – means that the community of engineers and scientists who are engaged in developing microfluidic devices has entered the field from a variety of different backgrounds. Micromixers is uniquely comprehensive, in that it deals not only with the problems that are directly related to fluidics as a discipline (aspects such as mass transport, molecular diffusion, electrokinetic phenomena, flow instabilities, etc.) but also with the practical issues of fabricating micromixers and building them into microsystems and lab-on-chip assemblies. With practical applications to the design of systems vital in modern communications, medicine and industry this book has already established itself as a key reference in an emerging and important field. The 2e includes coverage of a broader range of fabrication techniques, additional examples of fully realized devices for each type of micromixer and a substantially extended section on industrial applications, including recent and emerging applications. Introduces the design and applications of micromixers for a broad audience across chemical engineering, electronics and the life sciences, and applications as diverse as lab-on-a-chip, ink jet printing, pharmaceutical manufacturing and DNA analysis. Helps engineers and scientists to unlock the potential of micromixers by explaining both the scientific (microfluidics) aspects and the engineering involved in building and using successful microscale systems and devices with micromixers. The author's applied approach combines experience-based discussion of the challenges and pitfalls of using micromixers, with proposals for how to overcome them.

Digital Fabrication in Interior Design

This book provides comprehensive and in-depth coverage of manufacturing processes from the standpoint of the product designer. Reflecting a growing need in industry and education for design-driven instruction, this book demonstrates the importance of considering the selection of manufacturing method early in the design process, illustrating how the selection of method directly affects the geometric characteristics of products. Beginning with a study of the design process itself in Chapter 1, readers are taken through the product development process, with concurrent engineering presented in Chapter 2 (new to this Second Edition) and cost - as a factor affecting design and manufacturability - covered in a new Chapter 11. Augmenting the book's design orientation are new chapters on design for assembly (Chapter 12) and environmentally conscious design and manufacturing (Chapter 13). The book also includes a wealth of worked-out design examples and design projects (in Chapters 3-11), and an appendix on materials engineering that explains how materials are selected in the design of products. This book provides engineers and product designers with solidly quantitative, design-driven discussion of manufacturing processes that supports a systems approach to manufacturing.

Advanced Technology for Design and Fabrication of Composite Materials and Structures

This informative volume on designing, detailing, and specifying metal in various applications is a much-needed reference tool for all professionals and students working with this vital material. Metal, written by designers who are also manufacturers, will acquaint designers, architects, and sculptors with the basic processes available to them in metal fabrication, so that they can begin their design process with a sense of how their work might be built. This book is not intended to instruct in the use of machinery, but rather provides a framework of possibilities for people who design custom metalwork.

Design and Optimization of Metal Structures

"Given the many different applications and uses of diffractive optics, the importance of this field cannot be underestimated. This book supplements the available literature on diffractive optic elements (DOEs) by equipping readers with the skills to begin designing, simulating, and fabricating diffractive optics. The design of DOEs is presented with simple equations and step-by-step procedures for simulation—from the simplest 1D grating to the more complex multifunctional DOEs—and analyzing their diffraction patterns using MATLAB. The fundamentals of fabrication techniques such as photolithography, electron beam lithography, and focused ion beam lithography with basic instructions for the beginner are presented. Basic error analysis and error-correction techniques for a few cases are also discussed. The contents of all the chapters are supported throughout by practical exercises and clearly commented MATLAB® codes (the codes are also on an accompanying CD), making this book useful even to a novice programmer."—

Processes and Design for Manufacturing

A systematic approach towards integration of design and manufacturing is essential for optimizing all elements of the integrated manufacturing system. This book is an attempt towards this approach and is intended to provide an introduction to the design process, the manufacturing processes and the tools for integration to young engineering students. Fundamental information on materials, manufacturing processes and integrated manufacturing are provided which will help the designer in the selection of most appropriate materials, processes and methods to transform his ideas into a successful product.

PRODUCT DESIGN AND MANUFACTURING
Acces PDF Design And Fabrication Of A Mems Thermoelectric Generator

Presented the latest methods for designing and fabricating self-powered micro-generators and energy harvester systems. Design and Fabrication of Self-Powered Micro-Harvesters introduces the latest trends of self-powered generators and energy harvester systems, including the design, analysis, and fabrication of micro power systems. Presented in four distinct parts, the authors explore the design and fabrication of: vibration-induced electromagnetic micro-generators; rotary electromagnetic micro-generators; flexible piezo-micro-generator with various widths; and PVDF electropunpiezo-energy with interdigital electrode. Focusing on the latest developments of self-powered microgenerators such as micro rotary with LTCC and filament winding method, flexible substrate, and piezo fiber-type microgenerator with sound organization, the fabrication processes are examined in MEMS and nanotechnology are introduced chapter by chapter. In addition, analytical solutions are developed for each generator to help the reader understand the fundamentals of physical phenomena. Fully illustrated throughout and of a high technical specification, it is written in an accessible style to provide an essential reference for industry and academic researchers. Comprehensive treatment of the newer harvesting devices, including vibration-induced and rotary electromagnetic microgenerators, polyvinylidene fluoride (PVDF) nanoscale/microscale fiber, and piezo-micro-generators. Presents innovative technologies including LTCC (low temperature co-fired ceramic) processes, and PCB (printed circuit board) processes. Offers interdisciplinary interest in MEMS/NEMS technologies, green energy applications, bio-related sensors, actuators and generators. Presented in a readable style describing the fundamentals, applications and explanations of micro-harvesters, with full illustration.

Materials Enabled Designs

This book discusses the main issues of fabrication and design, and applications of micromachined resonant devices, including techniques commonly used for processing the output signal of resonant micro-electromechanical systems (MEMS). Concepts of resonance are introduced, with an overview of fabrication techniques for micromachined devices—important to understand as design options will depend on how the device will be fabricated. Also explained: excitation and signal detection methods; an analytic model of device behavior (a valuable design tool); numerical simulation techniques; issues of damping and noise for resonant MEMS; electronic interfacing; packaging issues; and numerous examples of resonant MEMS from academia and industry. Offers numerous academic and industrial examples of resonant MEMS. Provides an analytic model of device behavior. Explains two-port systems in detail. Devotes ample space to excitation and signal detection methods. Covers issues of damping and noise for resonant MEMS. Two topics of particular importance for high-Q devices.

Photonic MEMS Devices

Research into the manufacture of lightweight automobiles is driven by the need to reduce fuel consumption to preserve dwindling hydrocarbon resources without compromising other attributes such as safety, performance, recyclability, and cost. Materials, design, and manufacturing for lightweight vehicles will make it easier for engineers to not only learn about the materials being considered for lightweight automobiles, but also to compare their characteristics and properties. Part one discusses materials for lightweight automotive structures with chapters on advanced steels for lightweight automotive structures, aluminum alloys, magnesium alloys for lightweight powertrains and automotive structures, thermoplastics and thermoplastic matrix composites and thermoset matrix composites for lightweight automotive structures. Part two reviews manufacturing and design of lightweight automotive structures covering topics such as manufacturing processes for light alloys, joining for lightweight vehicles, recycling and lifecycle issues and crashworthiness design for lightweight vehicles. With its distinguished editor and renowned team of contributors, Materials, design, and manufacturing for lightweight vehicles is a standard reference for practicing engineers involved in the design and material selection for motor vehicle bodies and components as well as material scientists, environmental scientists, policy makers, car companies, and automotive component manufacturers. Provides a comprehensive analysis of the materials being used for the manufacture of lightweight vehicles while comparing characteristics and properties. Examines crashworthiness design issues for lightweight vehicles and further emphasizes the development of lightweight vehicles without compromising safety considerations and performance. Explores the manufacturing process for light alloys including metal forming processes for automotive applications.

Product Design for Manufacture and Assembly

The fundamentals of cabinetmaking, wood lamination, solid wood bending, finishing, and light frame construction are thoroughly explained and illustrated with more than seven hundred photographs and schematic diagrams.

Design and Fabrication of Diffractive Optical Elements with MATLAB

Bringing together pioneers in design and making within architecture, construction, engineering, manufacturing, materials technology and computation, Fabricate is a triennial international conference, now in its third year (ICD, University of Stuttgart, April 2017). The 2017 edition features 32 illustrated articles on built projects and works in progress from academia and practice, including contributions from leading practices such as Foster + Partners, Zaha Hadid Architects, Arup, and Ron Arad, and from world-renowned institutions including ICD Stuttgart, Harvard, Yale, MIT, Princeton University, The Bartlett School of Architecture (UCL) and the Architectural Association. Each year it produces a supporting publication, to date the only one of its kind specialising in Digital Fabrication.

Materials, Design and Manufacturing for Lightweight Vehicles

An encyclopaedic guide to production techniques and materials for product and industrial designers, engineers, and architects. Today's product designers are presented with a myriad of choices when creating their work and preparing it for manufacture. They have to be knowledgeable about a vast repertoire of processes, ranging from what used to be known as traditional “crafts” to the latest technology, to enable their designs to be manufactured to the highest quality and most efficiently. Information on the internet about such processes is often unreliable, and search engines do not usefully organize material for designers. This fundamental new resource explores innovative production techniques and materials that are having an impact on the design industry worldwide. Organized into four easily referenced parts—Forming, Cutting, Joining, and Finishing—over seventy manufacturing processes are explained in depth with full technical descriptions; analyses of the typical applications, design opportunities, and considerations each process offers; and information on cost, speed, and environmental impact. The accompanying step-by-step case studies look at a product or component being manufactured at a leading international supplier. A directory of more than fifty materials includes a detailed technical profile, images of typical applications and finishes, and an overview of each material's design characteristics. With some 1,200 color photographs and technical illustrations, specially commissioned for this book, this is the definitive reference for product designers, 3D designers, engineers, and architects who need a convenient, highly accessible, and practical reference.

Design for Manufacturing

This unique book, written by one of the world's foremost specialists in the field, is devoted to the design of low and medium field electromagnets whose field level and quality (uniformity) are dominated by the pole shape and saturation characteristics of the iron yoke. The wide scope covers material ranging from the physical requirements for typical high performance accelerators, through the mathematical relationships which describe the shape...
of two-dimensional magnetic fields, to the mechanical fabrication, assembly, installation, and alignment of magnets in a typical accelerator lattice. In addition, stored energy concepts are used to develop magnetic force relationships and expressions for magnets with time varying fields. The material in the book is derived from lecture notes used in a course at the Lawrence Livermore National Laboratory and subsequently expanded for the U.S. Particle Accelerator School, making this an invaluable reference for students planning to enter the field of high energy physics. Mathematical relationships tying together magnet design and measurement theory are derived from first principles, and chapters are included that describe mechanical design, fabrication, installation, and alignment. Some fabrication and assembly practices are reviewed to ensure personnel and equipment safety and operational reliability of electromagnets and their power supply systems. This additional coverage makes the book an important resource for those already in the particle accelerator business as well as those requiring the design and fabrication of low and medium field level magnets for charged particle beam transport in ion implantation and medical applications.

Design and Fabrication of Acousto-Optic Devices

Fabricate 2020 is the fourth title in the FABRICATE series on the theme of digital fabrication and published in conjunction with a triennial conference (London, April 2020). The book features cutting-edge built projects and work-in-progress from both academia and practice. It brings together pioneers in design and making from across the fields of architecture, construction, engineering, manufacturing, materials technology and computation. Fabricate 2020 includes 32 illustrated articles punctuated by four conversations between world-leading experts from design to engineering, discussing themes such as drawing-to-production, behavioural composites, robotic assembly, and digital craft.

Sustainable Manufacturing and Design

This work offers detailed discussions on all aspects of acousto-optic deflectors, modulators and tunable filters, emphasizing hands-on procedures for design, fabrication and testing. It contains previously unpublished treatments of acousto-optic device design and impedance matching, permitting the actual design of real devices and device-matching circuits.

Mems

Design, Fabrication, and Characterization of Multifunctional Nanomaterials covers major techniques for the design, synthesis, and development of multifunctional nanomaterials. The chapters highlight the main characterization techniques, including X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning probe microscopy. The book explores major synthesis methods and functional studies, including: Brillouin spectroscopy; Temperature-dependent Raman spectroscopic studies; Magnetic, ferroelectric, and magneto-electric coupling analysis; Organ-on-a-chip methods for testing nanomaterials; Magnetron sputtering techniques; Pulsed laser deposition techniques; Positron annihilation spectroscopy to prove defects in nanomaterials; Electroanalytic techniques. This is an important reference source for materials science students, scientists, and engineers who are looking to increase their understanding of design and fabrication techniques for a range of multifunctional nanomaterials. Explains the major design and fabrication techniques and processes for a range of multifunctional nanomaterials: Demonstrates the design and development of magnetic, ferroelectric, multiferroic, and carbon nanomaterials for electronic applications, energy generation, and storage; Green synthesis techniques and the development of nanofibers and thin films are also emphasized.

Manufacturing Processes for Design Professionals

Manufacturing and Design presents a fresh view on the world of industrial production: thinking in terms of both abstraction levels and trade-offs. The book invites its readers to distinguish between what is possible in principle for a certain process (as determined by physical law); what is possible in practice (the production method as determined by industrial state-of-the-art); and what is possible for a certain supplier (as determined by its production equipment). Specific processes considered here include metal forging, extrusion, and casting; plastic injection molding and thermoforming; additive manufacturing; joining; recycling; and more. By tackling the field of manufacturing processes from this new angle, this book makes the most out of a reader’s limited time. It gives the knowledge needed to not only create well-produce designs, but also to understand supplier needs in order to find the optimal compromise. Apart from improving design for production, this publication raises the standards of thinking about producibility. Emphasizes the strong link between product design and choice of manufacturing process. Introduces the concept of a “production triangle” to highlight tradeoffs between function, cost, and quality for different manufacturing methods. Balanced sets of questions are included to stimulate the reader’s thoughts. Each chapter ends information on the production methods commonly associated with the principle discussed, as well as pointers for further reading. Hints to chapter exercises and an appendix on long exercises with worked solutions available on the book’s companion site: http://booksite.elsevier.com/9780080999277/

Fabricate

Fabrication & Design of Resonant Microdevices

The last decade has seen a significant growth in the processing and fabrication of advanced composite materials. This volume contains the up-to-date contributions of those with working experience in the automotive, marine, aerospace and construction field. Starting with modern technologies concerned with assessing the change in material microstructure in terms of the processing parameters, methodologies are offered to account for tradeoffs between the fundamental variables such as temperature and pressure that control the product quality. The book contains new ideas and data, not available in the open literature.

Micromixers

As our knowledge of microelectromechanical systems (MEMS) continues to grow, so does The MEMS Handbook. The field has changed so much that this Second Edition is now available in three volumes. Individually, each volume provides focused, authoritative treatment of specific areas of interest. Together, they comprise the most comprehensive collection of MEMS knowledge available, packaged in an attractive slipcase and offered at a substantial savings. This best-selling handbook is now more convenient than ever, and its coverage is unparalleled. The second volume, MEMS: Design and Fabrication, details the techniques, technologies, and materials involved in designing and fabricating MEMS devices. It begins with an overview of MEMS materials and then examines in detail various fabrication and manufacturing methods, including LIGA and macromolding, X-ray based fabrication, EFAB(R) technology, and deep reactive ion etching. This book includes three new chapters on polymeric-based sensors and actuators, diagnostic tools, and molecular self-assembly. It is a thorough guide to the
Important aspects of design and fabrication. MEMS: Design and Fabrication comprises contributions from the foremost experts in their respective specialties from around the world. Acclaimed author and expert Mohamed Gad-el-Hak has again raised the bar to set a new standard for excellence and authority in the fledgling fields of MEMS and nanotechnology.

Computational Intelligence in Design and Manufacturing

This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs). Although there are not long derivations or detailed methods for specific engineering calculations, the reader should be familiar and comfortable with basic computational techniques. This text is not a 'cookbook' for producing DOEs, but it should provide readers with sufficient information to assess whether this technology would benefit their work, and to understand the requirements for using the concepts and techniques presented by the authors.

Fundamentals of Design and Manufacturing

This book focuses on numerical simulations of manufacturing processes, discussing the use of numerical simulation techniques for design and analysis of the components and the manufacturing systems. Experimental studies on manufacturing processes are costly, time consuming and limited to the facilities available. Numerical simulations can help study the process at a faster rate and for a wide range of process conditions. They also provide greater prediction accuracy and deeper insights into the process. The simulation models do not require any pre-simulation, experimental or analytical results, making them highly suitable and widely used for the reliable prediction of process outcomes. The book is based on selected proceedings of AIMTD 2016. The chapters discuss topics relating to various simulation techniques, such as computational fluid dynamics, heat flow, thermo-mechanical analysis, molecular dynamics, multibody dynamic analysis, and operational modal analysis. These simulation techniques are used to: 1) design the components, 2) to investigate the effect of critical process parameters on the process outcome, 3) to explore the physics of the process, 4) to analyse the feasibility of the process or design, and 5) to optimize the process. A wide range of advanced manufacturing processes are covered, including friction stir welding, electro-discharge machining, electro-chemical machining, magnetic pulse welding, milling with MQL (minimum quantity lubrication), electromagnetic cladding, abrasive flow machining, incremental sheet forming, ultrasonic assisted turning, TIG welding, and laser sintering. This book will be useful to researchers and professional engineers alike.

Advancement in Microstrip Antennas with Recent Applications

These are the proceedings of the International Conference on Design, Fabrication and Economy of Metal Structures held on 24-26 April 2013 in Miskolc, Hungary which contain 99 papers covering: Structural optimization Thin-walled structures Stability Fatigue Frames Fire Fabrication Welding technology Applications Steel-concrete composite Special problems The authors are from 23 different countries, ensuring that the themes covered are of worldwide interest and importance. The International Institute of Welding (IIW), the International Society of Structural and Multidisciplinary Optimization (ISSMO), the TAMOP 4.2.1.B-10/2-KONV-2010-0001 project entitled “Increasing the quality of higher education through the development of research - development and innovation program at the University of Miskolc supported by the European Union, co-financed by the European Social Fund” and many other sponsors helped organizers to collect these valuable studies, the results of which will provoke discussion, and provide an important reference for civil and mechanical engineers, architects, researchers and structural designers and fabricators, as well as managers in a range of industries including building, transport, shipbuilding, aircraft, chemical and offshore engineering.

Design, Fabrication and Economy of Metal Structures

This book presents an integrated approach to the design and manufacturing of products made of advanced composites. It is designed to teach students and practicing engineers how to streamline and improve the design process for parts and machines made out of composite materials by focusing on the behavior of composites and their constitutive relationships during the design stage. The primary market for this text will be industry-sponsored courses and practicing engineers, with some potential for use in university graduate courses in the US and abroad. The book will include a CD of the authors' own analytical software, Axiomatic CLPT (Classical Lamine Plate Theory) for students and self-learners. It is part of the Oxford Series on Advanced Manufacturing (OSAM).

Digital Design and Fabrication

Photonic MEMS devices represent the next major breakthrough in the silicon revolution. While many quality resources exist on the optic and photonic aspect of device physics, today's researchers are in need of a reference that goes beyond to include all aspects of engineering innovation. An extension on traditional design and analysis, Photonic MEMS Devices: Design, Fabrication, and Control describes a broad range of optical and photonic devices, from MEMS optical switches and bandgap crystal switches to optical variable attenuators (VOA) and injection locked tunable lasers. It deals rigorously with all these technologies at a fundamental level, systematically introducing critical nomenclature. Each chapter also provides analysis techniques, equations, and experimental results. The book focuses not only on traditional design analysis, but also provides extensive background on realistic simulation and fabrication processes. With a clear attention to experimental relevance, this book provides the fundamental knowledge needed to take the next-step in integrating photonic MEMS devices into commercial products and technology.

Design and Manufacturing of Plastics Products

Design for Manufacturing assists anyone not familiar with various manufacturing processes in better visualizing and understanding the relationship between part design and the ease or difficulty of producing the part. Decisions made during the early conceptual stages of design have a great effect on subsequent stages. In fact, quite often more than 70% of the manufacturing cost of a product is determined at this conceptual stage, yet manufacturing is not involved. Through this book, designers will gain insight that will allow them to assess the impact of their proposed design on manufacturing difficulty. The vast majority of components found in commercial batch-manufactured products, such as appliances, computers and office automation equipment are either injection molded, stamped, die cast, or (occasionally) forged. This book emphasizes these particular, most commonly implemented processes. In addition to chapters on these processes, the book touches upon material process selection, general guidelines for determining whether several components should be combined into a single component or not, communications, the physical and mechanical properties of materials, tolerances, and inspection and quality control. In developing the DFM methods presented in this book, he has worked with over 30 firms specializing in injection molding, die-casting, forging and stamping. Implements a philosophy which allows for easier and more economic production of designs Educates designers about manufacturing Emphasizes the four major manufacturing processes
Design, Fabrication, Properties and Applications of Smart and Advanced Materials

The book discusses basic and advanced concepts of microstrip antennas, including design procedure and recent applications. Book topics include discussion of arrays, spectral domain, high Tc superconducting microstrip antennas, optimization, multiband, dual and circular polarization, microstrip to waveguide transitions, and improving bandwidth and resonance frequency. Antenna synthesis, materials, microstrip circuits, spectral domain, waveform evaluation, aperture coupled antenna geometry and miniaturization are further book topics. Planar UWB antennas are widely covered and new dual polarized UWB antennas are newly introduced. Design of UWB antennas with single or multi notch bands are also considered. Recent applications such as, cognitive radio, reconfigurable antennas, wearable antennas, and flexible antennas are presented. The book audience will be comprised of electrical and computer engineers and other scientists well versed in microstrip antenna technology.

Manufacturing and Design

Sustainable Manufacturing and Design draws together research and practices from a wide range of disciplines to help engineers design more environmentally sustainable products. Sustainable manufacturing requires that the entire manufacturing enterprise adopts sustainability goals at a system-level in decision-making, hence the scope of this book covers a wide range of viewpoints in response. Advice on recyclability, zero landfill design, sustainable quality systems, and product take-back issues make this a highly usable guide to the challenges facing engineering designers today. Contributions from around the globe are included, helping to form an international view of an issue that requires a global response. Addresses methods to reduce energy and material waste through manufacturing design Helps to troubleshoot manufacturability problems that can arise in sustainable design Includes coverage of the legislative, cultural and social impacts of sustainable manufacturing, promoting a holistic view of the subject

Diffractive Optics

There are books aplenty on materials selection criteria for engineering design. Most cover the physical and mechanical properties of specific materials, but few offer much in the way of total product design criteria. This innovative new text/reference will give the “Big picture view of how materials should be selected—not only for a desired function but also for their ultimate performance, durability, maintenance, replacement costs, and so on. Even such factors as how a material behaves when packaged, shipped, and stored will be taken into consideration. For without that knowledge, a design engineer is often in the dark as to how a particular material used in particular product or process is going to behave over time, how costly it will be, and, ultimately, how successful it will be at doing what is supposed to do. This book delivers that knowledge. * Brief but comprehensive review of major materials functional groups (mechanical, electrical, thermal, chemical) by major material categories (metals, polymers, ceramics, composites) * Invaluable guidance on selection criteria at early design stage, including such factors as functionality, durability, and availability * Insight into lifecycle factors that affect choice of materials beyond simple performance specs, including manufacturability, machinability, shelf life, packaging, and even shipping characteristics * Unique help on writing materials selection specifications

Metal

This volume collects about 20 contributions on the topic of robotic construction methods. It is a proceedings volume of the robarch2012 symposium and workshop, which will take place in December 2012 in Vienna. Contributions will explore the current status quo in industry, science and practitioners. The symposium will be held as a biennial event. This book is to be the first of the series, comprising the current status of robotics in architecture, art and design.

Robotic Fabrication in Architecture, Art and Design 2014

Design and Manufacturing of Plastics Products: Integrating Conventional Methods and Innovative Technologies brings together detailed information on design, materials selection, properties, manufacturing, and the performance of plastic products, incorporating the utilization of the latest novel techniques and additive manufacturing technologies. The book integrates the design of molded products and conventional manufacturing and molding techniques with recent additive manufacturing techniques to produce performant products and cost-effective tools. Key areas of innovation are explained in detail, including hybrid molds, the integration of processing options with product properties and performance, and sustainability factors such as eco-design strategies, recycling, and lifecycle assessment. Other sections cover the development of plastics products, including design methodologies, design solutions specific to plastics, and design for re-use, as well as manufacturing and performance, with an emphasis on thermoplastic molding techniques, recent advances on plastics tooling, and the appraisal of the influence of processing options on product performance. This is a valuable resource to plastics engineers, design engineers, mold makers, and product or part designers across industries. It will also be of interest to researchers and advanced students in plastics engineering, polymer science, additive manufacturing and mechanical engineering. Offers a thorough grounding in plastics part design, thermoplastic material selection, properties, manufacture and performance of plastic parts Presents the latest advances, including the integration of additive manufacturing in the plastics product development cycle, hybrid molds, and lifecycle and recycling considerations Enables the reader to utilize traditional methods alongside cutting-edge technologies in the production of performant plastic products and parts

Design for CNC

This book introduces various advanced, smart materials and the strategies for the design and preparation for novel uses from macro to micro or from biological, inorganic, organic to composite materials. Selecting the best material is a challenging task, requiring tradeoffs between material properties and designing functional smart materials. The development of smart, advanced materials and their potential applications is a burgeoning area of research. Exciting breakthroughs are anticipated in the future from the concepts and results reported in this book.

Iron Dominated Electromagnets

Digital Fabrication in Interior Design: Body, Object, Enclosure draws together emerging topics of making that span primary forms of craftsman ship to digital fabrication in order to theoretically and practically analyze the innovative and interdisciplinary relationship between digital fabrication technology and interior design. The history of making in interior design is aligned with traditional crafts, but a parallel discourse with digital fabrication has yet to be made evident. This book repositions the praxis of experimental prototyping and integrated technology to show how the use of digital fabrication is inherent to the interior scales of body, objects and enclosure. These three scales act as a central theme to frame contributions that reinforce the interdisciplinary nature of Interior design and reinterpret traditional crafts by integrating new methods of making into conventional workflows.
Featuring significant international practitioners and researchers, the selected contributions represent the ever-increasing interdisciplinary nature of design, demonstrating a breadth of disciplines. A foundational text for interiors students and practitioners, Digital Fabrication in Interior Design expands the necessary dialogue about digital fabrication at the scale of interiors to inform design theory and practice.

Advanced Photonics Metasurfaces: Design, Fabrication, and Applications

This domain derives from such diverse disciplines as electronics, mechanical engineering, fluid dynamics, thermodynamics, chemistry, physics, metallurgy and optics. The author, with nearly four decades of experience in R&D, technology development, and education and training, provides a practical and hand-on approach to the subject, by covering the latest technological developments and covering all the vital aspects of PCB, i.e. design, fabrication, assembly, testing, including reliability and quality. With this coverage, the book will be useful to designers, manufacturers, and students of electrical and electronic engineering.

Fabricate 2020

Take the next step in Integrated Product and Process Development This pioneering book is the first to apply state-of-the-art computational intelligence techniques to all phases of manufacturing system design and operations. It equips engineers with a superior array of new tools for optimizing their work in Integrated Product and Process Development. Drawing on his extensive experience in the field of advanced manufacturing, Andrew Kusiak has masterfully embedded coverage of data mining, expert systems, neural networks, autonomous reasoning techniques, and other computational methods in chapters that cover all key facets of integrated manufacturing system design and operations, including: * Process planning * Setup reduction * Production planning and scheduling * Kanban systems * Manufacturing equipment selection * Group technology * Facilities and manufacturing cell layout * Warehouse layout * Manufacturing system product and component design * Supplier evaluation Each chapter includes questions and problems that address key issues on model integration and the use of computational intelligence approaches to solve difficulties across many areas of an enterprise. Examples and case studies from real-world industrial projects illustrate the powerful application potential of the computational techniques. Comprehensive in scope and flexible in approach, Computational Intelligence in Design and Manufacturing is right in step with the enterprise of the future: extended, virtual, model-driven, knowledge-based, and integrated in time and space. It is essential reading for forward-thinking students and professional engineers and managers working in design systems, manufacturing, and related areas.